

Roberta Amorim de Assis

Aperfeiçoamento e aplicações de uma metodologia para análise de especiação de arsênio por eletroforese capilar com detector de ICPMS

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Química da PUC-Rio.

Orientadores: Prof. Dr. Norbert Miekeley Prof. Dr. Ivo Lewin Küchler

Rio de Janeiro, dezembro de 2006

Roberta Amorim de Assis

Aperfeiçoamento e aplicações de uma metodologia para análise de especiação de arsênio por eletroforese capilar com detector de ICPMS

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Dr. Norbert Miekeley Orientador PUC-Rio

Prof. Dr. Ivo Lewin Küchler UFF

Profa. Dra. Cora Cunha Campos UFRJ

Dra. Shirley de Mello P. Abrantes FIOCRUZ

Prof. Dr. Ricardo Erthal Santelli UFF

Prof. Dr. Reinaldo Calixto de Campos PUC-Rio

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 19 de dezembro de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Roberta Amorim de Assis

Graduou-se em Química Industrial pela Universidade Federal Fluminense, fazendo parte do quadro permanente de professores desta universidade desde 1990. Obteve seu título de Msc em Química Analítica pela Pontifícia Universidade Católica do Rio de Janeiro.

Ficha Catalográfica

Assis, Roberta Amorim de

Aperfeiçoamento e aplicações de uma metodologia para análise de especiação de arsênio por eletroforese capilar com detector de ICPMS / Roberta Amorim de Assis ; orientador: Norbert Miekeley ; coorientador: Ivo Lewin Küchler . – 2006.

159 f. : il. ; 30 cm

Tese (Doutorado em Química)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2006.

Inclui bibliografia

 Química – Teses. 2. ICPMS. 3. Eletroforese capilar. 4. Especiação de arsênio. 5. Contaminantes em suco de uva. 6. Metabolismo de MMA (V) em cavalos. I. Miekeley, Norbert. II. Küchler, Ivo Lewin. III Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. IV. Título.

CDD: 540

Ao Clauber e aos meus filhos, Michele e Vítor, pelo incentivo, apoio e compreensão.

Agradecimentos

Aos meus orientadores, Norbert Miekeley e Ivo L. Küchler, pela orientação, confiança e apoio na realização deste trabalho.

À PUC-Rio pela bolsa recebida da VRAC.

Aos funcionários da PUC-Rio, em especial Adriana, Rodrigo, Anselmo e Noberto pela ajuda quando necessário.

Ao técnico Álvaro Jorge Pereira pelos ensinamentos sobre ICPMS, ajuda nas análises e amizade.

Aos estagiários do Laboratório de ICPMS da PUC-Rio, Paulo e Leonardo, pela ajuda nas análises.

Ao Dr. Joerg Feldman da Universidade de Aberdeen pela gentileza da doação dos padrões de As e Sb.

Aos colegas da PUC-Rio pelo apoio e incentivo.

Ao CENPES/Petrobrás pelo apoio financeiro e pelo empréstimo de um ICPMS, modelo Elan 6000.

À Burgener Research, AU pela doação do nebulizador Mira Mist CE.

Às minhas amigas Heloísa e Ana pelo apoio, incentivo e, principalmente, pela amizade que me fortaleceram nos momentos mais difíceis.

À UFF pela concessão do meu afastamento total.

Aos colegas do Departamento de Química Analítica, em especial minhas amigas Aída e Soly, pelo incentivo, apoio e pela amizade sempre presentes.

À Dra. Shirley de Mello P. Abrantes, do INCQS da FIOCRUZ, pela ajuda inicial

no aprendizado sobre eletroforese capilar.

À diretora do Laboratório Antidoping do Jóquei Clube do Brasil, Marta Brandão Tozzi e seus colaboradores, pela importante cooperação no projeto sobre o metabolismo de MMA(V) em cavalos.

À minha mãe Lenira, meus irmãos Lúcia e Roberto, pelo carinho, incentivo e apoio emocional.

Aos integrantes da Comissão Examinadora.

Resumo

Assis, Roberta Amorim, Miekeley, Norbert (orientador). **Aperfeiçoamento e aplicações de uma metodologia para análise de especiação de arsênio por eletroforese capilar com detector de ICPMS.** Rio de Janeiro, 2006. 159p. Tese de Doutorado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

A eletroforese capilar (CE) como técnica de separação está bem estabelecida para o uso em estudos de especiação elementar; porém, em muitas aplicações, a baixa sensibilidade devido à detecção UV, impede a obtenção de baixos limites de detecção (LD). Desta forma, tem sido de grande relevância o estudo do acoplamento (hifenação) entre a CE e sistemas de detecção mais sensíveis. Iniciou-se o trabalho com uma avaliação crítica entre diversas interfaces para o acoplamento entre a CE e a espectrometria de massas com plasma indutivamente acoplado (ICPMS). Foram testadas uma interface comercial e outras, adaptadas no próprio laboratório a partir de diferentes micronebulizadores e câmaras de nebulização. O estudo concluiu que o nebulizador de fluxo paralelo (Mira Mist CE, Burgener Research, AU) apresentou melhor performance, devido a ausência de efeito de retro-pressão acima do orifício do capilar de eletroforese, e por ter um canal de amostra suficientemente grande para introduzir o capilar até a saída do nebulizador, impedindo assim, o entupimento do mesmo em trabalhos de rotina, observado em todos os outros nebulizadores. Utilizando este nebulizador e uma câmara ciclônica de volume reduzido (20 mL), foi desenvolvida uma metodologia para separação eletroforética e quantificação por ICPMS de cinco espécies de arsênio: AsIII, AsV, MMAV, DMAV e AsB. Um estudo sistemático de diversos parâmetros experimentais resultou nas seguintes condições otimizadas para a separação e nebulização: tampão de fosfato 20 mmol L^{-1} (pH = 9) com 1,5 mmol L^{-1} de TTAB como modificador do fluxo eletroosmótico; tempo de injeção no modo hidrodinâmico de 40 s a 50 mbar; e solução make up de NH₄NO₃ 20 mmol L⁻¹ (pH = 9) com 10 % de metanol, e vazão de 40 μ L min⁻¹. Iodeto foi utilizado para monitorar a separação eletroforética, enquanto que Cs⁺ foi usado para controlar a eficiência e constância de nebulização. Os desvios padrão relativos para a posição dos picos e as suas

áreas correspondentes foram < 10% para todas as espécies, enquanto que os limites de detecção foram de 2,5 μ g L⁻¹ para AsB e de 0,5 μ g L⁻¹ para as demais. A metodologia foi aplicada para análise de especiação de arsênio em amostras de suco de uva, e num estudo preliminar sobre o metabolismo de Arsenil® (MMAV) em cavalos. No primeiro estudo, observou-se que as concentrações de As-total em todas as amostras analisadas (31 de 20 marcas de suco de uva diferentes), e também de outros elementos tóxicos (p.ex. Al, Hg, Cd, Sn, Pb, e Al), encontravam-se abaixo dos "Limites Máximos de Tolerância" estabelecidos pela legislação brasileira. Estudos de especiação por CE-ICPMS e FIA-HG-ICPMS mostravam que entre os cinco espécies de arsênio estudadas, apenas as inorgânicas (AsV e AsIII) estavam presentes, em proporções variáveis. O estudo sobre a absorção e excreção da droga Arsenil® (MMAV) em cavalos mostrou que a droga é rapidamente eliminada pelo organismo, sugerindo uma cinética de primeira ordem para o processo, durante o tempo investigado (sete dias), com tempos de meia vida de aproximadamente 34 h (urina) e 44 h (plasma), respectivamente. Observou-se a presença de DMAV na urina como único metabólito da droga, já presente nos primeiros dois dias da aplicação, e acompanhando o perfil de absorção e excreção do Arsenil® (MMAV). Estes resultados indicam que a metilação é a via principal de desintoxificação, confirmando observações já feitas por diversos autores, mas em outros sistemas biológicos.

Palavras-chave

ICPMS; eletroforese capilar; especiação de arsênio; contaminantes em suco de uva; metabolismo de MMAV em cavalos.

Abstract

Assis, Roberta Amorim, Miekeley, Norbert (orientador). Improvements and applications of a methodology for the speciation analysis of arsenic using capillary electrophoresis with ICPMS detector. Rio de Janeiro, 2006. 159p. Doctoral Thesis, Pontifícia Universidade Católica, Rio de Janeiro.

Capillary electrophoresis (CE) is a well established separation technique for the study of elemental speciation, however, its low electroosmotic flow (nL min⁻¹) restricts its application in many studies in which low detection limits are required. For this reason, the study of CE coupling (hyphenation) to more sensitive detectors is of great relevance. This work was initiated with a critical evaluation of different interfaces of CE to ICPMS, including a commercial interface, and others, mounted in our laboratory from different micronebulizers and spray chambers. Best results in routine work were obtained with a parallel flow nebulizer (Mira Mist CE, Burgener Research, AU) due to the absence of backpressure on the capillary orifice and its large internal sample channel, which permits that the CE capillary can be inserted up to the nebulizer exit, thus avoiding clogging problems observed in all other nebulizers. Using this nebulizer in combination with a small-volume cyclonic spray chamber (20 mL), a method was developed for the electrophoretic separation and quantification by ICPMS of five arsenic species: AsIII, AsV, MMAV, DMAV and AsB. The systematic study of different experimental parameters resulted in the following optimized separation and nebulization conditions: phosphate buffer (pH = 9.0), 20 mmol L^{-1} with 1.5 mmol L⁻¹ TTAB as electroosmotic flow modifier; injection time (hydrodynamic mode) of 40 s at 50 mbar; make-up solution of NH₄NO₃ 20 mmol L^{-1} (pH = 9) containing 10% of methanol and injected at flow of 40 μ L min⁻¹. Iodide was used as a monitor for the electrophoretic separation, whereas Cs⁺ was applied for controlling the nebulization efficiency and constancy. Repeatabilities (RSD) in peak location and peak area measurements were better than 10% in all cases, and detection limits were about 2.5 μ g L⁻¹ for AsB and 0.5 μ g L⁻¹ for all other species studied. The methodology was applied in the speciation analysis of arsenic in grape juice samples, and in a preliminary study on the uptake, transformation and excretion of Arsenil® (MMA^V) by horses. In the first study, low concentrations o total arsenic and other toxic elements (e.g Al, Hg, Cd, Sn, Pb, e Al) were measured in 31 samples (20 different brands) and which were in accordance with "Maximum Tolerance Levels" established by Brazilian laws. Speciation analysis of these samples by CE-ICPMS and FIA-HG-ICPMS revealed the existence, in varying proportions, of only inorganic arsenic species (As^V and As^{III}). The investigations on the uptake and excretion of Arsenil® (MMA^V) by horses showed that the drug is rapidly eliminated from the organism, suggesting a first order kinetics for the excretion/elimination with half lives of about 34 h and 44 h for urine and plasma, respectively, within the time period of seven days here studied. DMA^V was the only metabolic alteration product of Arsenil® detected already in the first two days after drug uptake and accompanying its absorption and excretion profile. These results indicate that methylation is the principal detoxification pathway, as already observed by other authors but for different biologic systems.

Key-words: ICPMS; capillary electrophoresis; arsenic speciation; contaminants in grape juice; metabolism of MMA^{V} in horses.

Sumário

1 Introdução e objetivos	23
1.1. Importância da especiação	23
1.2. Alguns aspectos do acoplamento entre eletroforese capilar e a	
espectrometria de massas com plasma indutivamente acoplado	25
1.3. Objetivos deste trabalho	26
2 Teoria Geral sobre Eletroforese Capilar	28
2.1. Breve resumo sobre a técnica de eletroforese capilar	28
2.1.1. Eletroforese capilar de zona (CZE)	28
2.1.2. Cromatografia eletrocinética micelar (MEKC)	29
2.1.3. Isotacoforese Capilar (CITP)	30
2.1.4. Focalização Isoelétrica Capilar (CIEF)	31
2.1.5. Eletroforese Capilar em Gel (CGE)	32
2.1.6. Eletrocromatografia Capilar (CEC)	33
2.2. Aspectos teóricos sobre a eletroforese capilar de zona	34

3 Revisão bibliográfica sobre o acoplamento entre eletroforese capilar e espectrometria de massas com plasma indutivamente acoplado (ICPMS)39

4 Arsênio: Breve resumo sobre a especiação deste elemento e de suas propriedades toxicológicas 50 4.1. Fontes de arsênio 50 4.2. Toxicologia do arsênio nos seres humanos 52 4.3. Toxicologia do arsênio nos animais 54 4.3.1. Determinação de arsênio como exame antidoping em cavalos de 55 corrida 4.4. Espécies de arsênio no ambiente e estabilidade das soluções 57 4.5. Análise de especiação de arsênio 59 5 Materiais e Métodos 62

5.1. Eletroforese capilar	62
5.1.1. Condicionamento dos capilares	63
5.2. Espectrômetro de massas com plasma indutivamente acoplado	
(ICPMS)	65
5.3. Interfaces utilizadas entre CE e ICPMS	68
5.4. Preparo de reagentes e padrões	69
5.5. Coleta e preparo das amostras	71
5.5.1. Urina, sangue, plasma e pêlo	71
5.5.2. Suco de uva	73
5.6. Análise por geração de hidretos	74
6 Resultados e discussões	76
6.1. Comparação crítica das interfaces CE-ICPMS	76
6.1.1. Interface CEI-100	77
6.1.2. O nebulizador MCN-100	84
6.1.3. Nebulizador <i>MicroMist</i>	87
6.1.4. Nebulizador "Mira Mist CE"	91
6.2. Otimização e validação da metodologia para a especiação de	
arsênio	96
6.2.1. Otimização do pH do tampão de separação	96
6.2.2. Otimização da concentração do tampão de separação	100
6.2.3. Otimização da concentração do tensoativo TTAB	102
6.2.4. Otimização da voltagem	105
6.2.5. Parâmetros relacionados à introdução da amostra no ICPMS	108
6.3. Validação de metodologias analíticas	111
6.3.1. Separação e quantificação de espécies de arsênio por	
CE-ICPMS	111
6.3.2. Quantificação de arsênio por FIA-HG-ICPMS	115
6.3.3. Quantificação de As e outros elementos por ICPMS com	
calibração externa	118
6.4. Aplicações	121
6.4.1. Análise da amostras de suco de uva	121
6.4.1.1. Concentração de As-total e de alguns outros elementos	121

6.4.1.2. Especiação de arsênio em amostras de suco de uva	124
6.4.2. Análise do sangue, plasma, urina e pelo de crina em cavalos	
tratados com MMA (Arsenil®)	130
6.4.2.1. Concentração total de arsênio e de alguns outros elementos	
em amostras de crina de cavalo	130
6.4.2.2. Concentração de arsênio total em amostras de sangue,	
plasma e urina de cavalo antes, durante e depois do tratamento com	
Arsenil®	135
6.4.2.3. Análise de especiação de arsênio em amostras de urina	141
7 Conclusões e considerações finais	147
8 Referências bibliográficas	150

SIGLAS

- AFS Espectrometria de fluorescência atômica
- As(III) Arsenito
- As(V) Arsenato
- AsB Arsenobetaína
- AsC Arsenocolina
- AAS Espectrometria de absorção atômica
- CZE Eletroforese capilar de zona
- CEC Eletrocromatografia capilar
- CGE Eletroforese capilar em gel
- CIEF Focalização isoelétrica capilar
- CITP Isotacoforese capilar
- DMA(III) Ácido dimetil arsenoso
- DMA(V) Ácido dimetil arsínico
- FEI Federação eqüestre internacional
- FIA Análise por injeção em fluxo
- FSC Cromatografia de fluido supercrítico
- GC Cromatografia gasosa
- HG Geração de hidretos
- HPLC Cromatografia líquida de alta eficiência
- ICPOES Espectrometria de emissão óptica com plasma indutivamente acoplado
- ICPMS Espectrometria de massas com plasma indutivamente acoplado
- IUPAC International Union of Pure and Applied Chemistry
- MEKC Cromatografia eletrocinética micelar
- MMA(III) Ácido monometil arsenoso
- MMA(V) Ácido monometil arsínico
- μ_{ef} Mobilidade eletroforética
- $\mu_{feo}-Mobilidade~eletroosmótica$
- SEC Cromatografia de exclusão por tamanho
- TTAB Brometo de tetradeciltrimetil amônio

Lista de figuras

Figura 1: Princípio da eletroforese de zona em solução livre. (a) estado inicial,	
(b) zonas distintas de amostra, gerando uma migração diferencial.Adaptado	
de Kuhn & Hoffstetter-Kuhn (1993)	29
Figura 2: Representação esquemática do princípio da cromatografia	
eletrocinética micelar. Adaptada de Kuhn & Hoffstetter-Kuhn (1993)	30
Figura 3: Princípio da isotacoforese (a) Estado inicial, (b) Estado intermediário),
(c) Estado em equilíbrio. Adaptado de Kuhn & Hoffstetter-Kuhn (1993)	31
Figura 4: Princípio da focalização isoelétrica. a) geração do gradiente de pH,	
b) introdução da amostra, c) estado estacionário. Adaptado da referência:	
Kuhn & Hoffstetter-Kuhn, 1993	32
Figura 5: Princípio da Eletroforese Capilar em Gel. Adaptado da referência:	
Baker, 1995	32
Figura 6:Esquemadeumsistema de eletroforese capilar	
(http://www.ceandcec.com)	34
Figura 7: Representação esquemática da parede do capilar. feo =	
fluxo eletroosmótico (http://www.ceandcec.com)	35
Figura 8: Representação esquemática da migração de cátions e ânions na	
presença do fluxo eletroosmótico. µep é a mobilidade eletroforética,EOF =	
fluxo eletromótico. (http://www.ceandcec.com)	36
Figura 9: Equipamento para eletroforese capilar utilizado neste trabalho.	62
Figura 10: Cassetes e capilares para acoplamento com ICPMS (a) e para	
detecção UV (b).	64
Figura 11: ICPMS Elan 6000 no Laboratório de Espectrometria de Massas da	
PUC-Rio.	65
Figura 12: Interface CEI-100 (Cetac Technology, EUA). (1) conector "em	
cruz" mostrando as entradas: (2) do capilar (CAP), (3) do contato elétrico (COI	N)
e (4) do tubo para conduzir o líquido make up (MU).(5) nebulizador micro-	
concêntrico (MCN) inserido na câmara de nebulização (6).	77
Figura 13: Variação da Taxa de aspiração em função da vazão do gás de	
nebulização. Solução de In 10 μ g L ⁻¹ . a) 1,0 L min ⁻¹ , b) 1,1 L min ⁻¹ ,	

c) 1,2 L min ⁻¹ ,d) 1,2 L min ⁻¹ , e) 0,9 L min ⁻¹ , f) 1,05 L min ⁻¹ .	79
Figura 14: Medição da estabilidade do sinal de In 10 μ g L ⁻¹ . Ar = 1,05 L min ⁻¹ .	79
Figura 15: Eletroferograma de uma solução de Rb 200 μ g L ⁻¹ . V = 30 kV.	
I = 50 mbar/60s. Tampão: Borato 20 mmol L^{-1} , pH = 9,3. <i>Make up</i> : Borato	
$10 \text{ mmol } \text{L}^{-1}, \text{ pH} = 9,3.$	80
Figura 16: Separação de Cs e Li por eletroforese capilar e ICPMS. Tampão:	
Borato 20 mmol L^{-1} , pH = 9,3. V = - 30 kV. I = 50 mbar/60 s.	81
Figura 17: Eletroferograma de Sb(III) 100 μ g L ⁻¹ . I = 50 mbar/180s. V = - 30	
kV. Tampão: Fosfato 10 mmol L^{-1} + TTAB 0,5 mmol L^{-1} ,pH = 6,5.	
<i>Make up</i> : Fosfato 10 mmol L^{-1} , pH = 6,5.	82
Figura 18: Eletroferograma de Sb(V) 100 μ g L ⁻¹ . I = 50 mbar/180s.V = - 30	
kV. Tampão: Fosfato 10 mmol L^{-1} + TTAB 0,5 mmol L^{-1} ,pH = 6,5.	
<i>Make up:</i> Fosfato 10 mmol L^{-1} , pH = 6,5.	82
Figura 19: Separação de Sb(III) e Sb(V) 100 μ g L ⁻¹ cada. I = 50 mbar/5 s.	
V = -30 KV. Tampão: Fosfato 10 mmol L ⁻¹ + TTAB 0,5 mmol L ⁻¹ ,pH = 6,5.	
<i>Make up</i> : Fosfato 10 mmol L^{-1} , pH = 6,5.	82
Figura 20: Separação de Sb(III) 50 μ g L ⁻¹ , Sb(V) eTMSb 10 μ g L ⁻¹ cada.	
I = 50 mbar/5 s. V = - 30 KV. Tampão: Fosfato 10 mmol L^{-1} + TTAB 0,5	
mmol L^{-1} , pH = 6,5. <i>Make up</i> : Fosfato 10 mmol L^{-1} , pH = 6,5.	83
Figura 21: Sinal de Sb(V) 10 mg L ⁻¹ . Vazão do gás de nebulização de 0,4 L.	
min ⁻¹ . Tampão: Fosfato 10 mmol L^{-1} + TTAB 0,5 mmol L^{-1} , pH = 9.	
<i>Make up</i> : Fosfato 10 mmol L^{-1} + In 10 µg L^{-1} , pH =9. I = 50 mbar/60 s.	
V = -30 kV.	84
Figura 22: Sinal de Sb(V) 10 mg L ⁻¹ . Vazão do gás de nebulização de 0,5 L.	
min ⁻¹ . Tampão: Fosfato 10 mmol L^{-1} + TTAB 0,5 mmol L^{-1} , pH = 9.	
<i>Make up</i> : Fosfato 10 mmol L^{-1} + In 10 µg L^{-1} , pH =9. I = 50 mbar/60 s.	
V = -30 kV.	85
Figura 23: Sinal de Sb(V). Vazão do gás de nebulização de 0,6 L min ⁻¹ .	
Tampão: Fosfato 10 mmol L^{-1} + TTAB 0,5 mmol L^{-1} , pH = 9. <i>Make up</i> :	
Fosfato 10 mmol L^{-1} + In 10 µg L^{-1} , pH =9. I = 50 mbar/60 s. V = - 30 kV.	85
Figura 24: Sinal de Sb(V). Vazão do gás de nebulização de 0,7 L min ⁻¹ .	
Tampão: Fosfato 10 mmol L^{-1} + TTAB 0,5 mmol L^{-1} , pH = 9. <i>Make up</i> :	
Fosfato 10 mmol L^{-1} + In 10 µg L^{-1} , pH =9. I = 50 mbar/60 s.V = - 30 kV.	85

Figura 25: Interface composta de uma peça em formado de "cruz" acoplado	
ao nebulizador MicroMist.	87
Figura 26: Separação de Sb(V) e As(V) 100 μ g L ⁻¹ cada. I = 50 mbar/30 s.	
V = - 30 KV. Tampão: Fosfato 20 mmol L^{-1} + TTAB 0,5 mmol L^{-1} , pH = 9.	
<i>Make up</i> : NH_4NO_3 20 mmol L ⁻¹ + Cs 0,5 µg/L, pH = 9.	88
Figura 27: Eletroferograma do MMA 100 μ g L ⁻¹ . I = 50 mbar/5 s,	
V = - 14 KV.Tampão: Fosfato 20 mmol L^{-1} + TTAB 0,5 mmol L^{-1} , pH = 9.	
<i>Make up</i> : NH_4NO_3 20 mmol L^{-1} + Cs 0,2 µg L^{-1} , pH = 9.	89
Figura 28: Eletroferograma do DMA 100 μ g L ⁻¹ . I = 50 mbar/5 s.	
V = - 14 KV. Tampão: Fosfato 20 mmol L^{-1} + TTAB 0,5 mmol L^{-1} , pH = 9.	
<i>Make up</i> : NH ₄ NO ₃ 20 mmol L^{-1} + Cs 0,2 µg L^{-1} , pH = 9.	89
Figura 29: Eletroferograma do As(V) 100 μ g L ⁻¹ . I = 50 mbar/5 s.	
V = - 30 KV. Tampão: Fosfato 10 mmol L^{-1} + TTAB 0,5 mmol L^{-1} , pH = 6,5.	
<i>Make up</i> : NH_4NO_3 20 mmol L^{-1} + Cs 0,2 µg L^{-1} In, pH = 9.	89
Figura 30: Apresentação esquemática da construção e funcionamento do	
nebulizador Mira Mist CE com conector "T" para eletroforese capilar. F =	
flow spoiler. Esquema adaptado do folheto de informação da Burgener	
Research (Au).	91
Figura 31: Foto apresentando o acoplamento CE-ICPMS usando como	
interface o nebulizador Mira Mist CE. No detalhe (a) mostra-se o sistema	
nebulizador/câmara de nebulização com o "T" e a conexãoelétrica e no	
(b) a conexão da interface com o ICPMS.	92
Figura 32: Eletroferograma do Sb(V) 100 μ g L ⁻¹ . I = 50 mbar/10 s.	
V = - 20 KV. Tampão: Fosfato 20 mmol L^{-1} + TTAB 0,5 mmol L^{-1} ,pH = 9.	
<i>Make up</i> : NH_4NO_3 20 mmol L^{-1} + Cs 0,2 µg L^{-1} , pH = 9.	93
Figura 33: Aspiração de uma solução de Cs 1 μ g L ⁻¹ , utilizando-se vazões	
de aspiração diferentes (em μ L min ⁻¹) (a) 25; (b) 40 e (c) 60.	95
Figura 34: Eletroferograma da separação de espécies de As em pH's diferentes.	98
pH: (a) 7,5; (b) 8,0 e (c) 8,5 Picos: 1. As(V), 2. MMA(V), 3. DMA(V) + AsIII,	
4. AsB.	98
Figura 35: Eletroferograma da separação de espécies de As em pH's diferentes.	
pH: (a) 9,0; (b) 9,5. Picos: 1. As(V), 2. MMA(V), 3. DMA(V) 4. AsIII,5. AsB.	99
Figura 36: Eletroferograma da separação de espécies de As em concentrações	

de tampão diferentes. Tampão: fosfato, contendo TTAB 0,5 mmol L^{-1} , pH = 9,	,0
(a) 5 mmol L ⁻¹ ; (b) 10 mmol L ⁻¹ . Picos: 1.As(V), 2.MMA(V), 3. DMA(V),	
4. As(III). 5. AsB.	100
Figura 37: Eletroferograma da separação de espécies de As em concentrações	
de tampão diferentes. Tampão: fosfato, contendo TTAB 0,5 mmol L^{-1} ,pH = 9,	0
(a) 15 mmol L ⁻¹ ; (b) 20 mmol L ⁻¹ . Picos: 1.As(V), 2.MMA(V), 3. DMA(V),	
4. As(III). 5. AsB.	101
Figura 38: Eletroferograma da separação de espécies de arsênio em	
concentrações de TTAB diferentes. (a) TTAB 0,3 mmol L ⁻¹ ; (b) TTAB 1,0	
mmol L ⁻¹ . Picos: 1.As(V), 2.MMA(V), 3. DMA(V), 4. As(III).	102
Figura 39: Eletroferograma da separação de espécies de arsênio em	
concentrações de TTAB diferentes: (a) TTAB 1,5 mmol L ⁻¹ ; (b) TTAB 2,0	
mmol L ⁻¹ . Picos: 1. As(V), 2. MMA(V), 3. DMA(V), 4. As(III).	103
Figura 40: Eletroferograma da separação de 5 espécies de arsênio. Tampão:	
Fosfato 20 mmol ⁻¹ + TTAB 1,5 mmol L ⁻¹ , pH = 9. <i>Make up</i> : NH ₄ NO ₃	
20 mmol L^{-1} + Cs 1 µg L^{-1} + 10 % de metanol, pH = 9. Vazão da bomba:	
20 μ L min ⁻¹ , Ar = 1,0 L min ⁻¹ . I = 50 mbar/40 s. V = -28 kV. T = 20 °C.	
Picos: 1. As(V), 2. MMA(V), 3. DMA(V), 4. As(III), 5. AsB.	104
Figura 41: Função característica de voltagem x corrente em diferentes	
temperaturas. Eletrólito: solução tampão de fosfato 20 mmo L ⁻¹ + TTAB	
1,5 mmol L^{-1} (pH = 9). Equipamento: Agilent HP-CE 3D.	106
Figura 42: Eletroferograma da separação de 5 espécies de arsênio.	
Tampão: Fosfato 20 mmol L^{-1} + TTAB 1,5 mmol L^{-1} , pH = 9. <i>Make up</i> :	
$NH_4NO_3 20 \text{ mmol } L^{-1} + Cs \ 1 \ \mu g \ L^{-1} + 10 \ \% \text{ de metanol, } pH = 9. I = 50 \text{ mbar/}$	
20 s, V = - 25kV a 22 °C Pico de referência: I 50 μ g L ⁻¹ . Picos: 1. As(V),	
2. MMA(V), 3. DMA(V), 4. As(III) 100 μg L ⁻¹ cada e 5. AsB 50 μg L ⁻¹ .	107
Figura 43: Variação da intensidade dos sinais de As e Cs em função da vazão	
do gás de nebulização (argônio). Nebulizador Mira Mist CE com câmara	
ciclônica (mod. Cinnabar, 20 mL) (a) As; (b) Cs.	109
Figura 44: Estudo da estabilidade do sinal de Cs $(1 \mu g L^{-1})$ em função de vazõe	s
de aspiração diferentes: a) 10 μ L min ⁻¹ , b) 30 μ L min ⁻¹ , c) 40 μ L min ⁻¹ ,	
d) 50 µL min ⁻¹ . (Bomba HPLC mod. ABI 1400; nebulizador Mira Mist CE	
com câmara ciclônica).	110

Figura 45: Separação de 5 espécies de arsênio. Condições experimentais:	
Tampão: Fosfato 20 mmol L^{-1} + TTAB 1,5 mmol L^{-1} , pH = 9. <i>Make up</i> :	
$NH_4NO_3 20 \text{ mmol } L^{-1} + Cs \ 1\mu g \ L^{-1} + 10 \% \text{ metanol}, \ pH = 9.I = 50 \text{ mbar/}20 \text{ s},$	
$V = -25 \text{ kV} \text{ a } 22^{\circ} \text{ C}$, Vazão da bomba: $40 \mu \text{L min}^{-1}$, Ar = 0,95 L min ⁻¹ .	
Pico de referência: Γ : 50 µg L ⁻¹ ; Picos: 1. As(V), 2. MMA(V), 3. DMA(V),	
4. As(III) 100 μ g L ⁻¹ cada; 5. AsB: 50 μ g L ⁻¹ .	110
Figura 46:Curvas analíticas de cinco espécies de arsênio determinados por	
CE-ICPMS [1: As(III), $R^2 = 0,992$; 2: DMA, $R^2 = 0,997$; 3: MMA, $R^2 =$	
0,999; 4: As(V), $R^2 = 0,996$; 5: AsB, $R^2 = 0,993$].	113
Figura 47: Visualização dos picos das espécies de arsênio na região limite.	
A) padrão de 2,5 μ g L ⁻¹ cada e b) padrão de 0,5 μ g L ⁻¹ cada. Picos: 1. As(V),	
2. MMA(V), 3. DMA(V) e 4.As(III).	114
Figura 48: a) Exemplos Sinais transientes para As produzidos pelo sistema	
FIAS 200 acoplado ao ELAN 5000 ICPMS; b) Chemifold com separador de	
membrana utilizado neste trabalho.	116
Figura 49: Curva de calibração típica para As obtida com o sistema FIAS 200	
acoplado ao ELAN 5000 ICPMS. Alça de amostragem: 250 µL.	117
Figura 50: Exemplos de curvas de calibração para determinação quantitativa	
multielementar por ICPMS. Calibração externa com padronização dos sinais	
pelo ródio (Rh).	118
Figura 51: Especiação de arsênio por CE-ICPMS em uma amostra de suco de	
uva (Dom Cândido) com concentração total de As de cerca de 20 μ g L ⁻¹ .	
Injeção: 50 mbar/40 s, V = - 25 kV, Ar = 0,96 L min ⁻¹ .	127
Figura 52: Identificação dos picos em suco de uva (vide Figura 51) pela	
adição de 20 μ g L ⁻¹ de As(V) e As(III), respectivamente.	128
Figura 53: Teores de arsênio em amostras de pêlo de crina dos três cavalos	
antes e depois do tratamento com Arsenil®.	131
Figura 54:Cinética de absorção e excreção da droga Arsenil® monitorada	
através de amostras de sangue (total), plasma e urina do cavalo Cath	
Talescoean (Cta).	136
Figura 55:Cinética de absorção e excreção da droga Arsenil® monitorada	
através de amostras de sangue (total) e plasma em cavalos (Chaca eBlack Bits).137
Figura 56:Cinéticas de excreção de Arsenil® (MMA ^V) medidas através da	

determinação de As em amostras de plasma e urina do cavaloCath Talescoean	ļ
para o intervalo de tempo estudado, os resultados sugerem uma cinética de	
primeira ordem.	139
Figura 57: Eletroferograma do Arsenil® (1000 μ g L ⁻¹). Tampão: fosfato	
20 mmol L^{-1} + TTAB 1,5 mmol L^{-1} , pH = 9. <i>Make up</i> : NH ₄ NO ₃ 20 mmol L^{-1}	
+ Cs μ g L ⁻¹ + 10 % metanol. I = 50 mbar/5 s. V = -25 kV.Ar = 0,88 L min ⁻¹ .	
Vazão do <i>make up</i> : 40 μ L min ⁻¹ .	141
Figura 58: Eletroferograma obtido por CE-ICPMS da urina (1:5) do cavalo	
Cta no 5º dia da administração do medicamento Arsenil®. Tampão: fosfato	
20 mmol L^{-1} + TTAB 1,5 mmol L^{-1} , pH = 9. <i>Make up</i> : NH ₄ NO ₃ 20 mmol L^{-1}	
+ Cs μ g L ⁻¹ + 10 % methanol. I = 50 mbar/5 s. V = -25 kV. Ar = 0,88	
L min ⁻¹ . Vazão do <i>make up</i> : 40 μ L min ⁻¹ .	142
Figura 59: Eletroferograma mostrando a identificação do pico DMA(V)	
através da adição de um spike (50 $\mu g \ L^{\text{-1}}$) na urina do cavalo Cta no 5° dia da	
administração do medicamento Arsenil®. Condições experimentais	
semelhantes à Figura anterior.	142
Figura 60: Eletroferograma obtido imediatamente após a fortificação da urina	
com 500 μ g L ⁻¹ de Arsenil®, sete dias e vinte e dois dias depois. Urina do	
cavalo Cta; condições experimentais semelhantes às da Figura 58.	144
Figura 61:Curva de excreção de MMA(V), DMA(V) e As-total na urina do	
cavalo CTA. Concentrações em μ g L ⁻¹ .	146

Lista de tabelas

Tabela 1: Algumas interfaces entre CE e ICPMS utilizadas por diferentes	
autores na análise de especiação de diferentes elementos.	49
Tabela 2. Principais espécies de arsênio encontradas no meio ambiente.	
(Adaptada de Tonietto, 2005).	57
Tabela 3 – Parâmetros operacionais/instrumentais utilizados em medidas de	
ICPMS.	66
Tabela 4: Diferentes sistemas de introdução de amostras testados neste trabalh	0.68
Tabela 5: Nome e código dos cavalos que participaram do estudo.	72
Tabela 6: Sucos de uva analisados para determinação de arsênio.	73
Tabela 7: Tempo de migração e seu desvio padrão relativo (DPR) para	
diferentes espécies de As separadas e determinadas pela metodologia proposta	L
(n = 8).	111
Tabela 8: Comparação entre os desvios padrão relativos (DPR) na	
quantificação dos picos eletroforéticos por dois métodos diferentes (n = 8).	112
Tabela 9: Concentração média de arsênio (em μ g L ⁻¹) determinada em três	
materiais de referência por FIA-HG-ICPMS.	117
Tabela 10: Coeficientes de determinação das curvas analíticas obtidas neste	
trabalho por ICPMS e limites de quantificação expressa como concentração	
equivalente ao branco (BEC) para suco de uva diluído 1:10.	119
Tabela 11: Resultados obtidos na análise quantitativa de dois materiais de	
referência (urina liofilizada) no Laboratório da PUC-Rio (n=3; p = 0.05).	
Todas as concentrações em μ g L ⁻¹ .	120
Tabela 12: Determinação de contaminantes inorgânicos em suco de uva. (ND:	
não determinado; * Zn, Na e Cu em mg L^{-1} , restante em μ g L^{-1} . Na e Cr foram	L
determinados por ICP OES).	122
Tabela 13: Limites Máximos de Tolerância em suco de frutas. (Fontes: Coluna	ì
2 -ANVISA Dec. nº 55.871/1965; Coluna 3 - Commision Regulation	
nº 466/2001. Off. J. Europ. Communities 77:9, 2001; coluna 4 - Indian PFA	
Act, 1954).	123
Tabela 14: Determinação de As-total, As(III) e As(V) em suco de uva. Todas	

as concentrações de em μ g L ⁻¹ . (*) determinado após oxidação prévia da	
amostra (valores da Tabela 12).	125
Tabela 15: Amostras de suco de uva e seus respectivos conservantes (INS202:	
sorbato de potássio; INS211: benzoato de sódio; INS220: dioxido de enxofre;	
INS223: Metabissulfito de sódio).	126
Tabela 16:Concentrações de arsênio em amostras de pêlo de crina de cavalo	
antes (18/07/2006) e depois do tratamento (14/11/2006). Concentração de As	
em μ g g ⁻¹ ; a distância (em cm) se refere ao segmento da amostra recolhida a	
partir do couro cabeludo.	131
Tabela 17: Composição inorgânica (mineralograma) de uma amostra de pêlo	
de crina do cavalo Chaca (Jóquei Clube do Brasil, Rio de Janeiro), mostrando	
baixas concentrações de elementos tóxicos quando comparadas com cabelo	
humano (vide Tabela 17).	133
Tabela 18: Dados de referência para diferentes elementos em amostras de	
cabelo de uma população de 1082 indivíduos (homens e mulheres com idade	
entre 25 e 55 anos) utilizando-se o critério 1 σ , ou seja, 68% de uma distribuiçã	io
log-normal). Para elementos tóxicos, o valor corresponde a $(+1\sigma)$, para	
elementos "nutrientes" (essenciais), o intervalo é de $(\pm 1\sigma)$, vide Carneiro et al	l.,
2002.	134
Tabela 19: Concentrações médias de arsênio e outros parâmetros estatísticos p	ara
amostras de sangue e plasma dos cavalos que participaram neste estudo.	
Concentração em $\mu g L^{-1}$.	135
Tabela 20: Concentração (em μ g L ⁻¹) das espécies MMA(V) e DMA(V) em	
amostras de urina do cavalo Cta.	145
Tabela 21: Comparação dos resultados de As em urina obtidos por dois	
métodos independentes (CE-ICPMS e FIA-HG-ICPMS). ND = não	
determinado.	145